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Noise-induced anomalous diffusion over a periodically modulated saddle
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We study analytically and numerically the anomalous diffusion across periodically modulated parabolic
potential within Langevin and Fokker-Planck descriptions. We find that the probability of particles passing over
the saddle is affected strikingly by the periodical modulation with average zero bias. Particularly, the initial
phase plays an important role in the modulation effect. The effect of the correlation time of external Ornstein-
Uhlenbeck noise on dynamical process is also discussed. A reduction in overpassing probability is observed

due to finite correlation time.
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I. INTRODUCTION

Ever since Kramers’ pioneering work [1] on escape over a
potential barrier in dissipative systems, noise-induced trans-
port over a potential barrier has been widely studied in vari-
ous fields in biology, chemistry, engineering, and physics
(see review [2]). Recent years have witnessed a growing in-
terest in diffusion over a saddle [3-7] in nuclear physics in
which fusion dynamics of heavy ions is considered as in-
verse Kramers problem [3,7]. For this problem, one-
dimensional Langevin equations satisfying fluctuation-
dissipation theorem have been applied to describe the
motions of thermally activated particles [4,5]. By assuming
the potential around the saddle approximately as quadratic
function, exact expressions of stationary probability for par-
ticles passing over the saddle have been explicitly obtained.
It has been reported that a certain proportion of particles
surmount the barrier in the long-time limit, even with mod-
erately small initial kinetic energy [5]. It is notable that in the
recent years much work has been devoted to the systems
driven by periodically modulated potentials (see review [8]).
Examples include parametrically excited oscillators [9,10],
escape from a metastable state of periodically modulated sys-
tems [11,12], and anomalous diffusion in time-varying po-
tential landscapes [13-15]. Modulation makes potentials
varying in time periodically, and thus it becomes more effi-
cient to control the system parameters [9,11,12].

In a more realistic environment, it is necessary to consider
a finite correlation time of noise instead of a Dirac delta
correlation noise only for mathematically simplicity [ 16—18].
Such noise (colored noise) has a frequency-dependent spec-
tral density, resulting in non-Markovian dynamics. For the
last few decades, the transport induced by equilibrium or
nonequilibrium colored noise has attracted a large amount of
interest. Within various Langevin and Fokker-Planck de-
scriptions, the static and dynamical properties have been
evaluated for small-to-moderate-to-large values of the corre-
lation time and successfully applied to a large variety of
systems in physical, biological, and other fields [5,7,16-24].
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The aim of this paper is twofold. One is to study anoma-
lous diffusion over a potential barrier periodically varying in
time driven by Gaussian white noise. Similar periodical
modulation can be found in previous studies such as para-
metric resonance of optically trapped systems [9] and para-
metric oscillations [10,14,15]. Here we extend them to the
problem of diffusion over a parabolic saddle and investigate
modulation effect on the overpassing probability of particles.
The other is to explore the stochastic dynamics of the collec-
tive relevant degrees of freedom submitted to externally cor-
related noise. In the present paper, we consider overdamped
Langevin equation and corresponding Fokker-Planck equa-
tion. As a main result, we find that periodically modulated
potential barrier with average zero bias strongly affects the
overpassing probability as compared with time-independent
case. Another interesting result in this work is a reduction in
overpassing probability in systems driven by external col-
ored noise due to finite correlation time of colored noise.

This paper is organized as follows. In Sec II, we introduce
a system with parabolic barrier modulated temporally in co-
sinusoidal form. We derive the explicit expression of the
probability passing over the saddle and simulate the motion
of particles. In Sec III, we investigate the effects of the ex-
ternal Ornstein-Uhlenbeck noise on the dynamics of the sys-
tem. We take the integral Euler-Maruyama method to gener-
ate the exponentially correlation noise in numerical
simulations. The conclusion and the discussion are given in
Sec IV.

II. DIFFUSION DRIVEN BY GAUSSIAN WHITE NOISE

In this section we consider the case of motion across a
time-periodic parabolic potential barrier in the presence of
Gaussian white noise. The dynamics of the particle can be

described by one-dimensional Langevin equation [4,7,25],
d*x  dx 19U(x,10)
—+B—+—— =01, 1
dr’ dt m Jx &0 M

where B is the reduced friction coefficient, and Ul(x,?)
=—f(t)mQ°x?/2 with f(f) a time-periodic function. The sto-
chastic force has Gaussian distribution with the first and the
second moments
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(&(1)=0 and (&(nét')) = 2 6(t—t) (2)

where kg, T, and m are the Boltzmann constant, the tempera-
ture, and the mass of the particle, respectively.

In this paper, we focus on particle diffusion in over-
damped case. In the overdamped limit, 8>}, Eq. (1) is
reduced to

dx 0?

— —f(t)—x=75(1), 3

o O e= 0 G)
with the properties

(9(1))=0 and (n(1)n(t')) =2Dd(t-1'), (4)

where D=kzT/(mp) is the intensity of Gaussian white noise
7(t). One can obtain the position of a particle at time ¢ by
integrating Eq. (3) [26],

(1) = x,G (1) + G(1) f 748 (5)

where G(1) exp[ f 0f(s)ds] and x,<0 is initial position of
the particle. Thus the mean value of random variable x(¢)
reads as

(x(1)) = x0G(1), (6)

and the variance of x(¢) is

o2(1) = GX(1)I = GX(1) f f () ls ,)>d as',  (7)

G(5)G(s')
where the integral I is defined as
(n(s)n(s")) 77(5’)) . C
J0 f G(s)G(s") dsds’ = ZDJO G (s)ds. (8)

The Fokker-Planck equation corresponding to Eq. (3) can be
written as [24-27]

W _ 1( gzw) oW o
ﬁt__&xf(t)ﬁx TP ©)

where the initial condition W(x,7=0)=8(x—x,). In the con-
text of Brownian motion, this Fokker-Planck equation is
called the Smoluchowski equation.

As shown in Refs. [25,26], there is no stationary solution
of this equation since the drift term on the right side of Eq.
(9) is negative. Nevertheless, the linearity of Eq. (3) and
Gaussian noise 7(r) lead necessarily this Smoluchowski
equation to a solution of Gaussian distribution [3-7,25]. One
can obtain dynamical evolution of probability density func-
tion (PDF) W(x,r) via Fourier transform of W(x,r) and sub-
sequent inverse Fourier transform [26]. The PDF reads as

[x(1) = ()
exp{— 20200 }, (10)

where (x(¢)) and o2(7) are defined as Eqs. (6) and (7), respec-
tively.

1
W(x,?) =
V2mo(t)
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Consequently, the overpassing probability that one finds a
particle at the other side of the parabolic potential is given by
[5-7]

* 1 t
P(t)=f W(x,t)dx=—erfc{—<}v(—)>} (11)
0 2 V20(1)
In the overdamped case, it can be reduced to
l X0
P(t) = —erfc| - — (12)
2 [ EI}

by virtue of Egs. (6)—(8). This indicates that the overpassing
probability is totally determined by the integral / for any
given initial position x; of a particle. If the integral I con-
verges for large times 7, the probability has an asymptotic
value of

1 X0
P(t — ) = lim—erfc| — — (13)
=27 \N21

while a divergent / will lead to the maximum value P=0.5 of
the overpassing probability.

If the parabolic potential is time independent, for ex-
ample, f(f)=1, the system has a uniform potential saddle
whose dynamics has been extensively studied [3-5]. In this
case, probability (12) is reduced to

1 X0
P(t) = Eerfc - . (14)

2kpgT
(1-e
mQ?

In the long-time limit, this probability converges to

P(t—>00)=%erfc{\/%,], (15)
B

where B= %mﬂzxé denotes the barrier height measured from
the initial position. This recovers the result of Refs. [4,5] as
special case of overdamped limit for 8/ Q> 1.

In this work we are interested in the case where the para-
bolic saddle varies periodically in time with f(¢)=1
+g cos(wt+¢py), where 0=g=1 measures modulation
strength,  the modulation frequency, and ¢, €[0,27] the
fixed initial phase of the periodic modulation. In this situa-
tion, integral (8) can be transformed into

—Zﬂzr/ﬁ)

t
I= 2De2gsin qSO/(o)T_v)f e—2s/7}e—2gsin(wAv+([)0)/(w7j§)ds (16)

0

by introducing a characteristic relaxation time, 7,=3/Q2. In
terms of Taylor expansion for w>2/7,,

2sin(ws + ) 2 sin*(ws + )
g+ 2
WT w 7'%

+0(g%), (17)

e~ 2ssin(ws+p)/(w1) — | _

substituting Eq. (17) into Eq. (16) and neglecting the term
O(g?), one can obtain the overpassing probability from Eq.
(13) after straightforward calculations,
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FIG. 1. (Color online) The asymptotic probability for particles
passing over time-periodic saddle. The lines correspond to analyti-
cal prediction Eq. (18). The parameters are T=4, kz=1, xo=-2, B
=2, Q=1, and 7,=10. (a) Probability as a function of ¢, for given
modulation frequency w=0.3. (b) Probability as a function of ¢ for
given modulation strength g=1. The probabilities for w=0 (®) and
®=0.1 () are numerical results.

1 B .
P(t — ) = Eerfc{ \/ ﬁe‘gs‘“ /@)1 + ag +bg?) "2 |,
B

(18)

with

4 1 .
=- m;(z sin ¢y + w7, cos @),

1 1 1
b= + —c0s 2¢y + wT, sin 2¢hyy).
(z)27'% 1+ (1)27% wzrf( 0 o)

To demonstrate the modulation effect on diffusion, we
plot analytical prediction of asymptotic probability (18) ver-
sus initial phase ¢, for various modulation strength g and
frequency w, as shown in Fig. 1. In this paper, Boltzmann
constant kg and the particle mass m are set as unity. The
parameters xo=—2, =1 are taken. The temperature is T=4
unless otherwise stated. To meet the demand of overdamped
limit, B/Q=10 is adopted, and thus, 7,=10 is obtained.

On the other hand, we integrate numerically Langevin Eq.
(3) with Eq. (4) using the standard Euler-Maruyama method
with a small time step Ar=0.001. We simulate the motion of
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FIG. 2. (Color online) The asymptotic probability for particles
passing over periodical modulation saddle. The lines correspond to
analytical prediction given by Eq. (18). Here ¢,=0. Other main
parameters are same as those in Fig. 1. (a) Probability as a function
of modulation strength g. (b) Probability as a function of modula-
tion frequency w. The probability for small frequency 0 < w<<0.2 is
shown in the inset.

an ensemble of 50 000 particles starting at x,=-2. After a
long time, the overpassing probability comes to a steady
value. The numerical results of asymptotic probability aver-
aging over 100 realizations are also shown in Fig. 1.

Surprisingly, our study suggests that the diffusion over the
time-periodic saddle is greatly dependent on modulation pa-
rameters, in which initial phase ¢, of modulation plays a key
role. There are three cases where the overpassing probability
behaves significantly different for various values of ¢,. Case
I, in the area 37/2 = ¢py=2r, it is found that the probability
is suppressed. Case II, in the area /2= ¢py=r, the prob-
ability is greatly enhanced as a comparison [see Figs. 1(a)
and 1(b)]. Case III, 0<¢y<m/2 and 7w<py<3m/2,
whether the probability is suppressed or enhanced depends
on the parameter choice of modulation strength g and fre-
quency w. As shown in Fig. 1(b), one can see a transition
from suppression to enhancement of probability with grow-
ing w at ¢pp=7/4. While a transition of enhancement to sup-
pression is observed at ¢y,=57/4. Notably, all modulation
effects die down for small g and large .

In the following we focus on the case of ¢,=0 to make a
further investigation. As shown in Fig. 2, the overpassing
probability is suppressed significantly due to the periodical
modulation in this case. Starting from the same value of P
=0.1586 for g=0, the probability decreases monotonously
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FIG. 3. (Color online) Temperature dependence of the overpass-
ing probability. Here a dimensionless temperature 7/B is taken with
B=2 the barrier height measured from the initial position. The lines
are analytical probability (18) with ¢,=0. The details for low tem-
peratures are shown in the inset.

with the increasing of g at different modulation frequencies
w, as shown in Fig. 2(a). The modulation frequency depen-
dence of probability is shown by lines in Fig. 2(b). The prob-
ability increases with growing frequency, and asymptotically
close to the value of probability at g=0 in the high-frequency
limit.

The numerical results of asymptotic probability can be
found in Figs. 2(a) and 2(b), which are in excellent agree-
ment with analytical result (18). Notably, we obtain the over-
passing probability within a wide range of frequency by nu-
merical simulations, even for low modulation frequency
w(0=w=2/7), as shown in the inset of Fig. 2(b). We find
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that both large modulation strength g and low modulation
frequency w suppress the probability by a large margin. This
suppression is weakened for higher frequency, indicating that
only low-frequency modulation affects significantly diffusion
over the time-periodic potential saddle.

Temperature dependence of the overpassing probability is
depicted in Fig. 3. Both analytical formula (18) and numeri-
cal results have verified previous findings that large strength
of noise is helpful for particles to pass over the static para-
bolic saddle.

The time evolution of the overpassing probability is given
in Fig. 4(a). The normalized PDF at time =40 and =70 are
demonstrated in Figs. 4(b) and 4(c), respectively, corre-
sponding to steady overpassing probability for each case. It
is clear that only a small number of particles can surmount
the saddle in the modulated system as compared with the
case of static potential saddle.

III. DIFFUSION DRIVEN BY GAUSSIAN COLORED
NOISE

It is a more frequent case that real fluctuations of the
random force are correlated. In this section, we discuss dy-
namical process driven by exponentially correlated Gaussian
(Ornstein-Uhlenbeck) noise arising from external fluctuation
[16-18]. The system is described by overdamped Langevin
equation

dx 2

10 %x — ().

dr (19)

where B/Q> 1. In this section, we take f(f)=1+g cos(wt)
for simplicity. The stationary noise e(¢) satisfies

t=40 l t=70 l
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FIG. 4. (Color online) (a) Numerical results of time evolution of overpassing probability. Here ¢o=0. The other modulation parameters
are g=0 and g=0.5, ®=0.1, respectively. Numerical PDFs and corresponding Gaussian fit lines at time r=40 and t=70 are shown in (b) and
(c), respectively. The overpassing probability can be seen in the dark area.
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(e())=0 and <e(t)e(t')>=%exp<_|t_tl|>, (20)

& c

where D is the intensity and 7. is the correlation time of the
colored noise.

Thus, there are two characteristic times, relaxation time
7,=8/Q? and correlated time 7, of colored noise in such a
system. When the correlation time is much less than the re-
laxation time of the system, say 7.<< 7, Gaussian white noise
with statistic properties [Eq. (4)] is revisited. And then par-
ticles behave like those discussed in Sec. II. If 7. cannot be
neglected, the dynamical process is non-Markovian that the
system has memory effect of previous state through the col-
ored noise [16]. In this situation, the mean value (x(¢)) in Eq.
(6) is still valid while the variance o2(¢) becomes

"(els)e(s"))

. G(S)G(s’)des,’ (21)

() =G>l = Gz(t)ft
0

where the integral I reads as
[ (els)els))
I= ——— . dsds’. (22)
0 Jo G(s)G(s")

First, we discuss diffusion over a uniform saddle driven
by Gaussian colored noise €(r). When g=0, the integral has
explicit form in the long-time limit (see Appendix)

11— =) =D<m( 1 ) (23)
1+7

in terms of a dimensionless time 7=7./7,. This implies that
the diffusion is greatly slowed down in the presence of col-
ored noise with finite correlation time.

Due to colored noise, ordinary Fokker-Planck Eq. (9) can-
not be applied to describe time evolution of PDF W(x,?) of
such a system. The exact equation for the rate of change of
W(x,t) has been given by Hinggi er al. within a master-
equation description [16,28]. The solution is Gaussian, non-
Markovian in terms of initial probability distribution
W(x,0)=d(x—xo) [16],

1 [x—¢0)]
Wi(x,t) = \’Ta(t)exp{— 2all) }, (24)
with

t
a(r) = 2J D' (5)e* 7y,
0

(1) = xe" ™,

where time-dependent diffusion coefficient is written as
t
D'(1)= f (e(r)€s))e ) 7sds. (25)
0

For exponentially correlated noise (20), we have
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FIG. 5. (Color online) The overpassing probability as a function
of correlation time 7. Here B=2, Dy=0.4, and w=0.3. The dashed
line is the analytical prediction of Eq. (27).

D
D/(l‘) — ﬁ_[l _ e(l/TS—l/Tc)[], (26)

which keeps positive for different values of 7. After some
straightforward calculations, one can find that ¥(¢) and «a(r)
just correspond to the dynamical evolution of mean position
of the particles (x(¢)) and the variance ¢”(f) in Egs. (6) and
(21), respectively.

Integrating Eq. (24) from x=0 to x— o, one obtains ex-
plicitly the asymptotic overpassing probability

B(1+ T)}
mﬁDO ’

P(t — ) = %erfc{ (27)
This indicates that the finite correlation time 7, will lead to
the decreasing of overpassing probability, which is the other
main point of this work. Notice that in this work we discuss
the motion of particles driven by external colored noise,
while the systems driven by thermal colored noise have been
studied in Refs. [5,7]. where fluctuation-dissipation theorem
is satisfied. In Fig. 5 the dependence of probability on the
dimensionless time 7 is shown according to Eq. (27).

In the following, we concentrate our attention to numeri-
cal simulation of Langevin Eq. (19) with the colored noise
(20) to verify this analytical prediction. We generate the ex-
ponentially correlated colored noise from Gaussian white
noise. To aim at this, we rewrite Langevin Eq. (19) into
two-component form [18,29],

2

% =[1+g cos(wt)]gx + €(1), (28a)
d 1 1
.. e+ ) (28b)

where 7(r) is still Gaussian white noise with the properties
[Eq. (4)] and thus €(z) is the exponentially correlated noise
possessing the properties [Eq. (20)].

We integrate numerically the pair of Langevin Egs. (28a)
and (28b) using the integral Euler-Maruyama algorithm pro-
posed by Fox er al. [29]. We take the step size Ar=0.001 and
an ensemble of 50 000 particles in our simulations.
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FIG. 6. (Color online) The simulated PDFs and corresponding
Gaussian fit lines at time =40 submitted to Gaussian white noise
and Gaussian colored noise respectively. 7=7./7,=0.5. The over-
passing probability can be found in the dark area.

For the case of g=0, we calculate extensively the over-
passing probability for different correlation times 7, in our
simulations. A decaying probability is observed from small-
to-moderate-to-large dimensionless time 7, as shown in Fig.
5, which is consistent with analytical result (27).

To study the dynamics of such system, we simulate an
ensemble of particles starting from xy=-2 driven by Gauss-
ian colored noise with 7=0.5 and an ensemble of particles
driven by Gaussian white noise as comparison. The numeri-
cal results of time evolution of PDF in two systems are
shown in Fig. 6. One can see clearly that the centers of two
Gaussian PDFs move synchronously, while the variance of
the former is suppressed due to the finite correlation time 7.
Therefore, there is no surprise of a suppressed probability for
particles passing over the saddle for the case of colored noise
driving.

Now we discuss the case of 0 <<g=1. As was expected, a
superimposed effect on the diffusion process arising from the
combination of finite correlation time and periodical modu-
lation is observed in our numerical simulations. The
asymptotic probability as a function of correlation time 7 for
different g and w is shown in Fig. 5. Besides, the frequency
dependence of the overpassing probability can be found in
Fig. 7. The numerical results show that the probability is
suppressed by large modulation strength g and low fre-
quency w, and it is insusceptible to the periodical modulation
for high frequency. This is similar to those in the system
driven by Gaussian white noise.

IV. DISCUSSION AND CONCLUSION

In the present paper, we have investigated analytically and
numerically anomalous diffusion over periodical modulated
parabolic saddle by means of Langevin and Fokker-Planck
equations. We have demonstrated that the periodical modu-
lation saddle strongly affect the probability of particles pass-
ing over the parabolic saddle. The overpassing probability
has totally different behaviors for various values of ¢,. As an
example, we found the probability is suppressed for time-
periodic modulation with f(f)=1+g cos(wt), while is en-
hanced with f(¢)=1-g cos(wt). An alternate suppression and
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FIG. 7. (Color online) The numerical results of overpassing
probability as a function of modulation frequency w in the system
submitted to colored noise. 7=0.5 and Dy=0.4 in the simulations.
The analytical result of Eq. (27) for 7=0.5 is shown (dashed line) to
guide the eyes.

enhancement effect is observed for ¢y=m/4 and ¢py=5m/4,
which is greatly dependent on the modulation frequency w.
Notably, both small modulation strength g and high modula-
tion w will weaken these modulation effects, and hence the
results of diffusion over static saddle are recovered.

For the case driven by the external colored noise, the
dynamical process is non-Markovian, and then the diffusion
is greatly influenced by correlation time 7,. If 7.—0, the
process in Gaussian white noise is recurred again. If 7. can-
not be neglected, the overpassing probability is suppressed
by the external colored noise due to finite correlated time.

In this present paper, we consider the motion of particles
by the overdamped Langevin equation with unbounded
boundary condition, as was done in Refs [3-7]. We have
calculated numerically that the particle number of passing
over the saddle from one side to the other decays exponen-
tially with time. That is to say, there is almost no particle
passing over the saddle in the long-time limit, leading to a
small probability of a particle returning to its initial position.
Hence, the problem in this work is equivalent (in the long-
time limit) to the first passage time problem. More problems
of escape out of the potential varying in time determinately
and stochastically deserve further intensive study in the fu-
ture.
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APPENDIX

Starting from Langevin Eq. (19) with property (20), inte-
gral (22) is transformed to
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TeJo Jo

for g=0. By introducing the variables Q=s+s’ and g=s

—s', one can obtain
t [¢]
J e 25dQ f e edq
0 -0

D,
1=—°l
27,

% 2-0
+ f e 27%dQ eledq |
1 0-2

(A1)

(A2)

After straightforward calculations, we have
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= D07's< 1 ) + 2Dy, ~(UrliT) _ Me—zms
1+7/ (I+7n(1-17 (1-7)
(A3)
In the long-time limit, integral (22) becomes
I1=D (L) (A4)
=0T 1+7)
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